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Anisotropic etching of silicon crystals in 
KOH solution 
Part II Theoretical two-dimensional etched shapes: discussion 
of the adequation of the dissolution slowness surface 
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Theoretical two-dimensional etched shapes are derived from numerical simulations involving 
the equation of the dissolution slowness surface related to silicon crystals etched in aqueous 
KOH solutions. Theoretical changes in cross-sectional shapes of starting circular sections and 
in x' 1 and [001]  profilometry traces with the angle of cut, q)o, are analysed in terms of the 
geometrical features of the slowness surface. The important role played by extrema in the 
dissolution slowness in determining the final two-dimensional etched shapes, is outlined. 
Theoretical etched shapes are systematically compared with the experimental shapes and the 
adequation of the proposed slowness surface is discussed. 

1. Introduct ion 
During the last three decades, a number of works 
[1-12] have been devoted to the prediction of etching 
shapes for starting circular sections [-3, 4, 7 11] or for 
cross-sectional shapes encountered in localized chem- 
ical etching at the edge of an inert mask 
[1, 2, 5-7, 10, 12]. Many investigators [1, 2, 3-6] have 
based their works on the two dissolution criteria 
stated by Batterman [13] or on the kinematic model 
proposed by Frank [-4]. Under these conditions only 
limiting shapes have been constructed geometrically. 
These shapes are composed of the limiting linear 
profile elements associated with corresponding ex- 
trema in the polar plot of the etch rate, R, versus 
orientation (i.e. with minima in R for concave profiles 
or with maxima for convex profiles [4]). Thus the 
development of rounded portions in cross-sectional 
sections cannot be treated easily using conventional 
geometrical procedures. 

However, as soon as a model [15, 16] gives us an 
analytical expression which describes variations in the 
dissolution slowness, L (% 0) = l /R ,  with the orienta- 
tion (% ~) of crystal plates, it becomes possible 
[7-12, 17,18] to predict numerically final dissolution 
shapes in which curved portions must be accounted 
for. The tensorial representation [15, 16] of anisotro- 
pic etching proposed by Tellier and co-workers offers 
such a possibility, provided the representative surface 
of the dissolution slowness vector, L, was determined 
from experiments with a sufficient accuracy [8]. 

In Part I [19] of this work, experiments on the 
anisotropic etching of silicon crystal circular plates 

were extensively presented and a procedure to derive 
the dissolution slowness surface was proposed. In Part 
II we discuss the adequation of the derived slowness 
surface by comparing systematically the experimental 
and theoretical two-dimensional cross-sectional sha- 
pes resulting from etching. For this purpose, nu- 
merical procedures have been developed which start 
with polar diagrams of the dissolution slowness. In 
addition, theoretical etching shapes are analysed in 
terms of the influence ofextrema in the polar plot of L. 

2. Theoretical  basis 
2.1. Kinematic description of the anisotropic 

dissolution 
Let us recall that in the three-dimensional description 
of anisotropic etching [16, 17] the surface of a crystal 
can be decomposed into a succession of oriented 
planar surface elements, ds. The orientation of a sur- 
face element, is defined by means of two angles of cut, 
q~ and 0, as specified by the IEEE standard on piezoel- 
ectricity [20]. To each surface element we associate a 
dissolution slowness vector, L, whose magnitude, 
L(q~, 0), is the reciprocal of the normal dissolution 
rate, R (~, 0), and whose positive direction coincides 
with that of the inward normal unit vector, n, to the 
surface element (Fig. la). As the angles of cut q~ and 0 
vary, the vector L describes in space a representative 
surface called the dissolution slowness surface. 

The magnitude, L(% 0), is related to the three 
cartesian components, n 1, n 2 and n3, ofn by means of a 
polynomial regression involving components, D o, Di, 
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Figure 1 The geometry of the model. (a) Definition of the dissolu- 
tion slowness vector L and of the propagation vector P. 
(b) Geometrical properties of the propagation vector P in a three- 
dimensional model. 

Dij, Dijk, etc., of dissolution tensors [16, 17]. The 
number of dissolution constants is reduced by the 
symmetry the crystal class possesses and, as a result, 
the final equation (Equation 1 in Part I, [19]) is 
expressed in terms of angles of cut, q~ and 0. Provided 
that the dissolution slowness depends only on the 
local orientation (% 0), of surface element, Tellier [17] 
has shown that a moving surface element, ds, propa- 
gates along a straight line. Thus to each surface 
element we can associate a propagation vector, P, 
which corresponds to the displacement of ds within 
the crystal during an etching stage of duration dt 
(Fig. la). 

We can also deal (Fig. lb) with a polar representa- 
tion, L (8, [3) of L. In this case the two derivatives of L 
with respect to the polar angles (8, [3), define a plane, 
~ ,  tangent to the dissolution slowness surface at the 
point A of'corresponding orientation. Geometrical 
considerations [17] give evidence that the propaga- 
tion vector, P, lies parallel to the normal, N, to plane 

(Fig. lb). Because the polar angles are related to the 
angles of cut by means of the equations 

3x 
8 = (p + ~ -  (la) 

TC 
= 0 + ~ (lb) 

the cartesian components of P can be calculated from 
the equation L (% 0), of the dissolution slowness. 

In a two-dimensional kinematic model, a surface 
element, ds, is replaced by a profile element, dr, and 
thus we deal with the polar plot, lying in a starting 
cross-sectional plane (x~, x;). It is obvious that the 
propagation vector P lies now in the (x~, x;) plane and 
is perpendicular to the vector T tangent to the polar 
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Figure 2 The two-dimensional model. (a) Representation of a sur- 
face profile. (b) Polar plot of L in a (khO) plane with Lre f = L(q~ 
- q~o, 0 = 0~ Note that in the present work, owing to the sym- 

metry properties of class m 3 m, we can start with a polar plot lying 
either in an (h k 0) plane or in a (k h 0) plane. (c) Polar plot of L in a 
(001) plane. Lrer corresponds to L (r = 0 ~ 00 = 0~ 

diagram L(7) of L (Fig. 2b). If we consider [-18] the 
vector T as the derivative of the rotating vector L we 
can express the cartesian components, dx' 2 and dx~, of 
P by 

B(7) dt dx~ = + 

dx; = _A(Y) dx~ 
B(~,) (2) 

where A (7) and B (7) are the cartesian components of 
T, respectively. 

This two-dimensional description is sufficient when 
we are concerned with profilometry traces of cross- 
sectional shape of starting circular sections. Effect- 
ively, the numerical procedure consists of evaluating 
the various propagation vectors associated with all 
profile elements composing the starting surface profile 
[7 ] .  

In the present work we investigate theoretical et- 
ching shapes related to a starting (h k 0) silicon plane 
(r = q%, 0 = 0~ Depending on the etching shape 
under consideration, the numerical simulation in- 
volves a polar diagram lying in a (k h 0) plane or in the 
(0 0 1) plane. Thus taking into account the symmetry 
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properties of class rn 3m the polar angle, 7, is simply 
connected with the angle of cut, 0 (Fig. 2b) or with the 
angle q~ (Fig. 2c), respectively. As a consequence we 
start either with the equation L (q0 = q~o, O) in which O 
varies with the orientation, ~, of starting surface pro- 
file elements or with the equation L (% 0 = 0~ 

2.2. Correlation between final etching shapes 
and polar diagrams of L 

2.2. 1. Dissolution criteria 
The dissolution criteria stated by Batterman [-13] and 
later by Irving [21] are often used to predict approx- 
imate etching shapes for cross-sectional profiles (start- 
ing circular sections [3, 4, 7-11]) or of profilometry 
traces [1, 21]. Let us consider the situation illustrated 
in Fig. 2a and consider two surface profile elements 
Arl and A r  2 (i.e. two planes N1 and ~i~2) intersecting at 
an angle A. We can conveniently restate the stability 
criteria in terms of the dissolution slowness as follows: 
a concave intersection is stable (the angle A remains 
unchanged with etching) provided there is no element 
(i.e. no plane) between them with a higher dissolution 
slowness, and conversely, a convex intersection re- 
mains stable when there is no element between 
Arl and Ar 2 with a lower dissolution slowness. 
Stable intersections are associated with converging 
trajectories. 

Diverging trajectories correspond to converse situ- 
ations. If we are concerned with an initial surface 
profile composed of elements slightly disoriented with 
respect to the reference surface it is obvious that 
diverging trajectories cause the formation of rounded 
regions in the etched surface profile which flattens 
with repeated etchings [-8, 15, 21]. Turning our at- 
tention to the final cross-sectional etched shape re- 
lated to a starting cylindrical crystal, the angle, a, 
increases from 0 ~ to 360 ~ As a consequence, the 
dissolution profile may be composed of highly dis- 
oriented linear segments associated with rapidly 
diverging trajectories [4, 7, 8]. These limiting facets 
correspond to minima in L when we start with a 
cylindrical crystal or to maxima in L when we etch a 
cylindrical hollow. 

2.2.2. Rapid prediction of  dissolution shapes 
The dissolution criteria allow us to derive rapidly 
approximate two-dimensional dissolution shapes. 
Here we have to distinguish between cross-sectional 
profiles and surface profiles. 

2.2.2.1. Cross-sectional profiles. Let us consider, for 
example, the case of a starting cylindrical crystal. The 
limiting shape must be connected with minima in the 
corresponding polar diagram for L. It is evident that 
as L passes through an extremum the propagation 
vector P lies parallel to L. Thus it becomes easy to 
construct geometrically an approximate limiting 
shape incorporating only linear facets associated with 
minima. 
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In reality, numerical simulation of cross-sectional 
profiles [7, 8, 11] has shown that etched profiles ex- 
hibit generally rather complex shapes. They are com- 
posed of successive planar and somewhat rounded 
regions where quasi-planar facets are correlated to 
accentuated minima in L whereas less pronounced 
secondary minima cause the formation of rather roun- 
ded facets. Moreover, the shape of dissolution cross- 
sectional profiles changes with the duration of etching 
because with repeated etchings the planar facets grow 
at the expense of the rounded regions. 

2.2.2.2. Profilometry traces. Let the angle, ~, of a 
starting profile element, Ar, be in the range between 

- ~min and + ~ . . . .  that is to say, that in the case 
illustrated in Fig. 2b the angle 0 covers a sector from 

- 0rain to + 0m,x on the polar diagram of L. In the 
case of profilometry traces we work simultaneously 
with concave and convex intersections so that the final 
dissolution shape depends on the complexity of the 
portion of the polar graph into consideration here, i.e. 
to the nature and to the number of extrema for L lying 
in the sector (-0m~n, + 0re,x). In practice, we can 
distinguish between three characteristic situations il- 
lustrated in Table I where, for convenience, we have 
drawn the orientation dependence of L (q~o, 0) in the 
form L versus ~. These three interesting types of 
behaviour can be summarized as follows. 

(i) When ~ varies in the range ( -  ~min, + ~m,x), 
L (~) passes through a single extremum which occurs 
for an orientation, ~ = 0 ~ corresponding to the refer- 
ence surface. As a consequence, a concave (or a con- 
vex) background develops if the extremum is a max- 
imum (or a minimum) according to Irving's prediction 
[21]. The etched surface profile is thus essentially 
determined by diverging trajectories. 

(ii) Suppose that in the range ( - C~m~ n, + amax) we 
are now concerned with two successive extrema 
occurring at ~1 and ~2- The profile elements potentially 
present in the vicinity of ~1 and cq participate to the 
development of curved regions. As a result, the etched 
surface profile exhibits an alternate concave-convex 
(maximum of L for ~1, minimum for ~2) or 
convex-concave shape. However, in this case, care 
must be taken that the less accentuated are the two 
extrema, the more the alternate shape is easy to 
distinguish [-8]. 

(iii) If three extrema for L are present in the invest- 
igated a-range, a complex and continuously evolving 
behaviour can result from repeated etching depending 
on the relative amplitude of successive extrema. How- 
ever, the situations illustrated in column 3 of Table I 
merit some comments. Consider the first case pre- 
sented in column 3: elements in the vicinity of ~'ml and 
c%z diverge markedly and thus form rapidly a profile 
composed of elements whose slopes close to ~ml and 
O(rn 2 remain unchanged with prolonged etching. In 
addition, a formation of a rounded concave inter- 
section associated with the maximum L(aM = 0 ~ can 
come in the final stages of etching. Column 3 presents 
also the converse situation, with potentially an early 
development of a convex intersection around 0% = 0 ~ 



T A B L E  I Correlation between the etched shape of surface profiles and the nature and the number of extrema in the L versus <z plot 
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In reality, if trajectories associated with elements in 
the vicinity of %1 and =M2 diverge rapidly (very 
accentuated maxima) the formation of the convex 
intersection is masked and only elements with slopes 
~M1 and =M2 contribute apparently to the etched 
surface profile. 

From cases (ii) and (iii) described above, it appears 
that the geometrical features of profilometry traces 
can be modified by repeated etchings and that it 

remains very difficult to construct geometrically the 
etching shape of surface profiles. Only a numerical 
simulation based on the tensorial model for chemical 
etching allows us to derive the exact etching shape and 
to outline the important role played by the relative 
amplitude of successive extrema in L. 

However, let us remark that in Part I [19] we have 
partly made use of features described in Table I to 
derive the dissolution slowness surface of a silicon 
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crystal. This is the reason why it is necessary to verify 
the adequation of the proposed slowness surface by 
means of a numerical simulation. 

3. Numerical  simulation of two-  
dimensional dissolution shapes 

As noticed in Section 2, experimental results are re- 
lated to (h k 0) silicon planes, and the numerical simu- 
lations start with polar diagrams in the form L(q0 
= q~o + 90~ 0) or L(q0, 0o = 0~ i.e. for a crystal 

belonging to class m 3 m with diagrams lying in an 
(hk0) or a (00 1) plane, respectively. The simulation 
programs have been described elsewhere [7, 22]. Here 
it is sufficient to know that in the first step we work 
with all the potentially present elements of the starting 
profile and that in the last step tests are made to 
distinguish between diverging and converging traject- 
ories and to eliminate at each etching stage the ele- 
ments which do not contribute to the etched profile. 

To establish easily correlations between the pro- 
posed shape for the dissolution slowness surface and 
the final shape for dissolution profiles, we present, in 
addition, the polar diagrams of L corresponding to 
(h k 0) sections (simulation of etching shapes for ini- 
tially circular sections) and the part of L versus ~ plots 
involved in the theoretical prediction of etched surface 
profiles. 

3.1. Numerical simulation of cross-sectional 
profiles 

The (74 1 0) cross-section of a silicon cylindrical crystal 
etched in an aqueous KOH solution exhibits a rela- 
tively complex shape [19] characterized by the pre- 
sence of three different minima and three different 
maxima in the out-of-roundness profiles. This is the 
reason why we have generated a dissolution slowness 
surface by evaluating dissolution constants related to 
a tensor of rank Nma x = 18. As a result we obtain the 
polar diagrams. L (q0 = q0o, 0), displayed in Fig. 3 and 
lying in various (k h 0) planes. 

In the case of initially cylindrical crystal or thick 
circular plates the potentially present profile elements 
lie in an (hk0) plane and correspond to traces of 
planes tangent to the starting circular section at points 
defined by the angle ~p = q~o + 90~ and the varying 
angle 0. Taking into account the point group sym- 
metry 4 about the [00 1] axis, we thus make use of 
(k h 0) polar diagrams illustrated in Fig. 3 to predict 
the theoretical shape of etched thick circular plates 
(Fig. 4). In addition, the corresponding out-of-round- 
ness is superimposed to the etched section. The pro- 
gram gives also the theoretical angular positions 
(Table II) of maxima and minima in the various out- 
of-roundness profiles. 

A complete examination of Figs 3 and 4 and of 
Table II reveals several interesting features. 

1. As mentioned in Part I [19], an out-of-round- 
ness profile constitutes an approximate "image" of the 
corresponding polar diagram. This observation justi- 
fies the procedure we have chosen in Part I to generate 
the dissolution slowness surface. 

TABLE II Angular positions of peaks (%) and valleys (0m) 
appearing in the theoretical out-of-roundness profiles related to 
various (h k 0) sections (angle of cut q~o) 

% (deg) Etchant "KOH', rank 18 

Maxima 0M (~ Minima % (~ 

0 0,45,90 26,64 
5 0,55,90 35,63 

10 3,41,90 0,41 
14 10,37,90 0,29,50 
18 10,38,90 0,22,55 
23 8,37,90 0,16,59 
26 4,37,90 0,13,60 
30 0,36,90 11,61 
34 0,36,90 9,62 
37 0,36,90 9,62 
42 0,35,90 8,62 
45 0,35,90 8,63 

2. In the framework of dissolution criteria the min- 
ima appearing in out-of-roundness profiles related to 
convex sections are correlated to the development of 
quasi-planar facets connected with minima in L. As a 
consequence, angular positions of valleys in the theor- 
etical and experimental out-of-roundness profiles 
must coincide. Table III indicates that for q~0 in the 
range [0 ~ 18 ~ we obtain reasonable departures be- 
tween theoretical and experimental values. As ~0 o rea- 
ches 23 ~ (Fig. 3) the theoretical minimum is displaced 
toward 0m ~ 10 ~ whereas a maximum in L takes place at 
0M ~ 0 ~ Thus one can reasonably expect to observe a 
peak and a valley at similar positions in the corres- 
ponding experimental out-of-roundness profile ([19], 
Fig. 15f). Thus at the first sight, Tables II and III 
reveal an apparent disagreement between theory and 
experiment. But care must be taken that L passes 
rapidly from a maximum at 0M ~ 0 ~ to two accentua- 
ted minima located at 0~,1 = - 9 ~ and 0m2 = 9 ~ re- 
spectively. In the vicinity of these two minima, the 
trajectories of profile elements diverge markedly. As a 
result, the extent of the rounded portion associated 
with Lma x (0 = 0 o) is seriously masked by the develop- 
ment of the planar facets correlated with the two 
minima in L. Thus it can become difficult to detect the 
presence of such a maximum in the experimental out- 
of-roundness profiles. 

3. For q~o in the range (0 ~ 18 ~ the theoretical shape 
of out-of-roundness profiles changes continuously 
with q~o. The more rapid change occurs for q00 close to 
14 ~ . This observation agrees well with experimental 
results (Fig. 15a-e in [19-1). 

4. As ~Po increases 26 ~ to 45 ~ both the experimental 
and theoretical out-of-roundness profiles show quite 
similar geometrical features. All the profiles are 
characterized by the presence of a large maximum 
located at 0 ~ 36 ~ (see, for example, Tables II and III). 
This maximum is correlated to a { 1 1 1 } plane which 
etches very slowly [1, 23 26]. 

5. The fact that, in theory and in experiments ([19] 
Table III), angular positions, 0M, of peaks in the out- 
of-roundness profiles remain quasi-insensitive to the 
duration, t, of etching, and coincide exactly with the 
angular positions of maxima in the corresponding 
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polar diagram of L may be attributed to the high 
degree of symmetry of the class m 3 m. Effectively, it 
has been shown [8] that, in general, the shape of 
dissolution profiles changes with repeated etchings, 
because the limiting planar facets grow at the expense 
of curved regions. As a consequence, positions t? M 
depend on the etching time, t. In contrast, quite 
symmetrical portions of a polar diagram leave the 

angular positions, 0~, unchanged on prolonged et- 
ching. This is just the situation revealed by polar 
graphs displayed in Fig. 3. 

From the preceding remarks, we can infer that the 
numerical simulation remains in fair agreement with 
experiments. We have just to justify the possible pre- 
sence of a maximum in L (q~o, 0) for t? around 0 ~ when 
the angle of cut, g~o, lies in the range [26 ~176 
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Figure 3 Polar plots of L in various (k h 0) sections in KOH 18. (a-j) are for sections corresponding to g~o = 0~ 5~ 10~ 14~ 18~ 23~ 26~ 30 ~ 
34 ~ and 45 ~ respectively. As L(cp o, 0) takes large values for q~o ~> 23~ the polar plots represent In [L(q~o, 0)] for ~Po in the range [23 ~ 45~ 
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Moreover care must be taken because we cannot 
determine precisely the accentuation of the various 
extrema in L from a direct comparison of experi- 
mental and theoretical out-of-roundness profiles. For- 
tunately, to discuss the adequation of the proposed 
slowness surface, we can also derive theoretical pro- 
filometry traces related to starting rough surfaces 
[8, 9, 15, 22]. Such a numerical simulation can give us 

6 3 6 0  

additional interesting informations on the real angular 
positions of extrema in L as well as on the relative 
amplitude of successive extrema. 

3.2.  N u m e r i c a l  s i m u l a t i o n  o f  p r o f i l o m e t r y  
t races  

In this section some attempts are made to establish the 



adequation of the dissolution slowness surface pro- 
posed in Part I by predicting shapes of x'~ (or x') and 
[-001] profilometry traces. For simplicity, as a first 
step, we work with initially triangular profiles whose 
convex and concave intersections are formed by linear 
elements with slopes equal to + 0~ma x. In the second 
step, we start with a "real" surface profile as given by a 
microprocessor-based surface profilometer. In this last 
case, theoretical traces are then numerically worked at 
various etching times in order to extract comple- 
mentary information from the successive distributions 
of slopes [27]. 

As noticed earlier, we have chosen in these two steps 
to investigate the changes with orientation, q%, in the 
etching shape of traces made along the rotated X'l axis 
and along the [0 0 1] axis. Let the initial distribution 
of slopes extend from -~min to ~max' The profile 
elements composing the initial x'l trace lie in the (001) 
plane. Thus in the numerical simulation, we use a 
portion ( -~min,  + ~m,x) of the (001) polar plot 
centred on L (qa = q~o, 0 = 0~ The profile elements of 
a [001] profilometry trace made on an (hkO) plate 
(angle of cut q%) are tocated in the plane (khO). We 
thus work with the polar diagram corresponding to an 
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angle of cut q) = q)o + 90~ Taking into account the 
four-fold symmetry about the [0 01] axis which the 
class m3m possesses, it is obvious that we obtain 
identical shapes for [001] traces by simply starting 
with the portion of the (h k0) polar graph where the 
dissolution slowness related to the reference surface 
lies evidently parallel to the rotated axis. 

3.2. 1. Theoretical shape of etched triangular 
surface profiles 

For a starting triangular profile with slopes ~min = 
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~max = 15~ the numerical simulation provides for vari- 
ous etching times, t, the successive surface profiles 
displayed in Figs 5 and 6. In addition, Figs 5 and 6 
show also the corresponding L versus ~ plots. This 
type of simulation appears as very convenient when 
we search to establish rapidly a correlation between 
the presence of extrema in L versus 0~ plots and the 
etching shape of profiles. 

In particular from Figs 5 and 6 we collate several 
pieces of information in close agreement with predic- 
tions (see Table I) deduced from the dissolution cri- 
teria. 



1. When  the L versus c~ plot  presents a single 
ex t r emum for an or ienta t ion ~ = 0 ~ we obta in  effect- 
ively a convex or a concave background  (Fig. 5a, d,f). 
An accentuated or "sharp"  ex t r emum causes the rapid 
fo rmat ion  Of a rounded  background ,  together  with an 

early flattening of the trace (compare  Fig. 5a and f, for 
example). 

2. A prof i lometry  trace with an al ternate shape 
results f rom the existence of two ext rema for L(~) in 
the range [ - ~mi,, + ~ . . . .  ] (Fig. 5b, c, e). 
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3. Consider now the cases where L passes through 
three extrema (Fig. 6h-l). Profiles with constant slopes 
form rapidly if two rather sharp minima in L lie 
symmetrically to a maximum (Fig. 6k, 1). The concave 
intersections tend to be rounded with further etchings. 
The converse situation (two maxima and a minimum 
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in a = 0 ~ gives also a profile (Fig. 6b-d) whose slopes 
are quasi-unmodified with prolonged etching. Because 
in the ~ range investigated here we only observe slight 
variations in L the formation of rounded intersections 
associated with the minimum in L remains ineffective 
with prolonged etching. 



3 0  

from - 59~ ~ However, the major part of profile 
elements possesses a slope lying in the range ( - 27 ~ 
24 ~ (Fig. 7b). As the L versus ~ plot can exhibit several 
extrema in the to ta l  ~ range investigated here, the 
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3.2.2. Theoretical shape of etched "real" 
surface profiles 

A profilometry trace was made on a lapped surface so 
that the initial profile (Fig. 7) has slopes extending 
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theoretical dissolution profile can, consequently, pre- 
sent complex geometrical features. 

The simulation program furnishes digitalized pro- 
filometry traces which can be treated separately [27] 

6 3 6 6  

to visualize total surface profiles (see Fig. 8a-c, for 
example) and corresponding distributions of slopes 
(Fig. 8d-f, for example). In this condition it may be 
interesting to follow changes in theoretical shapes of 
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'-Po (deg) 0 5 10 14 18 23 26 30 34 37 42 45 

Maxima 0, 45, 90 0, 45, 90 0?, 45, 90 10, 43, 90 12, 41, 90 40, 90 36, 90 37, 90 37, 90 34, 90 35, 90 36, 90 
Oe (deg) 
Minima 27, 63 28, 62 28, 64 0, 27, 63 0, 23, 62 0, 63 0, 63 0, 64 0, 63 0, 61 0, 62 0, 64 
0 e (deg) 

o eo I , t t 
0.33 / 

Y l \'! / ' 
:~ -0 .08  ~ / 

-0 .21 \ ] { /  , 

-0 .35  ' \ , /  

- O. 49  /"J' 
-0 .62 .,,,'", ,"""" ,','",', ,~,',',', ~',',~,~,~,"'" I,..~,, I,.,,~d, ,.,,.,,I,.,,,,~ 

0 .00 0.01 0.03 0.05 
(a) Length (mm) 

273 

246 

218 

191 

164 

x~ 137 

;~ 109 

5 5  

27 

-59 -51 -43 -35 -27 -19 -11 
(b) Slope (deg) 

-3 5 13 21 

Figure 7 Experimental profilometry trace characteristic of a rough 
surface: (a) surface profile; (b) corresponding distribution of slopes. 

traces (Figs 8a c 12a-c) and in corresponding dis- 
tributions of slopes (Figs 8d-f-12d-f)  with the etching 
time, t. 

Let us first examine the various theoretical [001] 
traces. For the cut q~o = 10~ (Fig. 8), concave and 
convex regions are simultaneously present in theoret- 
ical traces. It is clear that concave regions are connec- 
ted with the two maxima which occurs for =ml and 
~m2, whereas convex parts are associated with the 
minimum in L at ct = 0 ~ (Fig. 6h). Only elements with 
large slope (lal > 15 ~ which etch rapidly disappear 
rapidly (see Fig. 8d and e) whereas elements in the 
range [ - 15 ~ + 15 ~ contribute longer to the etched 
profile. Then the etched profile possesses a weakly 
evolving distribution of slopes in relative agreement 
with experimental observation (Fig. 5 of Part I). Con- 
sider now the theoretical [001] trace related to a 
[110] plate (Fig. 9). The successive distributions of 
slopes give evidence for the existence of two minima in 
L lying symmetrically with respect to the maximum 

located at c~ = 0 ~ The theoretical traces show regions 
characterized by constant slopes ( 4- % with am ~ 9 ~ 
and concave regions with slightly disoriented ele- 
ments. Moreover, care must be taken because some 
profile elements have been omitted in the final trace 
(Fig. 9c). Effectively, when we work with very rough 
surfaces the increment, A ~, in ~ involved in simulation 
can approach 6 ~ for some sharp intersections (as 
intersection Is in Fig. 7a). Then the influence of some 
extrema can be partly masked resulting in the trunc- 
ation of final traces. In reality, only Fig. 9a and b seem 
representative of the [00 1] etched profile. This ex- 
planation is sufficient to describe also the behaviour of 
the predicted [0 0 I] traces related to the cut go o = 34 ~ 
(Fig. 10). 

Turning our attention to the simulation of some x '  1 

traces we observe the following points. 
(i) A profile wi th  alternate concave-convex shape 

(Fig. 11) results from the presence of two extrema in 
the L versus ~ plot. The corresponding asymmetric 
distribution of slopes splits into two distinct peaks as 
the etching time, t, increases (Fig. 1 le). The extent of 
the peak associated with positive slopes is larger than 
that related to negative slopes because trajectories of 
elements with negative slope diverge more rapidly (the 
maximum in L is less accentuated than the minimum, 
Fig. 5k). The angular position of these two peaks 
remains crudely unchanged with repeated etching be- 
cause the two extrema in L can be considered as 
"smooth" extrema. It has been effectively demon- 
strated [8] that only "sharp" extrema induce changes 
in the angular position of peaks with the duration of 
etching. 

(ii) When a concave background (Fig. 12) develops 
according to the scheme described in Table I the 
profile flattens with prolonged etching. We obtain a 
somewhat symmetrical distribution of slopes where 
larger slopes disappear progressively. 

3,2.3. Comparison with experiments and 
conclusion 

To cornpare easily the theoretical shape of surface 
profiles with that of experimental traces, we have 
collected the final x'~ and [001] theoretical traces in 
Figs 13 and 14, respectively. The comparison is based 
essentially on two points: 

(i) the visual geometrical aspect of profiles with a 
classification in terms of fundamental shape (convex, 
concave, alternate, constant slopes...); 

(ii) the features which characterize the final dis- 
tribution of slopes (extend E, angular positions of 
peaks in particular). 
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Figure 8 Theoretical changes in the etched shape of a "rough" surface profile and in the distribution of slopes with the duration of etching, t, 
for the case of a [0 0 1] trace made on a plane q% = 10 ~ (a, d) t = 0.5 arb. units; (b, e) t = 1 arb. units; (c, f) t = 3 arb. units. 

Taking into account that, from Section 3.2.2, we 
have to distinguish between two regions in profiles (i.e. 
elements with large slopes and elements with small 
slopes), Tables IV and V give the major features for 
theoretical x'~ and [00 1] traces, respectively. As the 
initial distribution of slopes differs markedly from a 
Gaussian distribution, it is not easy to distinguish 
secondary peaks. Thus we have chosen, in the third 
column of Table IV, to indicate the angular position of 
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the principal peak (P1) only for which no doubt 
subsists. This difficulty arises for x'l traces essentially. 
For convenience the etching shape characterizing ex- 
perimental x'l and [0 0 1] profilometry traces are sum- 
marized in Table VI. In addition, tentative attempts 
are made in Table VII to clarify the features of corres- 
ponding distributions of slopes. Here we discuss brief- 
ly the limitations imposed by the profiling instrumen- 
tation. It is well known [28] that a stylus (here a 
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Figure 9 Theoretical changes in the etched shape of a "rough" surface profile and in the distribution of slopes with the duration of etching, t, 
for the case of a [00 1] trace made on a plane q0 o = 45 ~ (a,d) t = 0.5 arb. units; (b,e) t = 1 arb. units; (c,f) t = 3 arb. units. 

diamond tip of about  2.5 pm) of finite size moving on a 
rough surface provides a first "mechanical filtering" 
which results in an attenuation of the vertical ampli- 
tude of peaks. This "smoothing" effect is a source of 
error for the distribution of slopes. 

Moreover, sharp peaks are rounded, whereas cur- 
ved valleys appear as sharp concave intersections in 
profilometry traces. The mechanical filtering also af- 
fects the shape of traces; consequently, for etched 

surfaces with close asperities, the identification of the 
true "dissolution shape" can be a problem. In most 
cases, experimental distributions associated with con- 
vex or concave backgrounds appear  more peaky at 

= 0 ~ relative to true distributions. Furthermore, 
because a surface profile of alternate shape is 
smoothed because of the finite tip which acts as a 
mechanical filter, we generally observe the persistence 
of a principal peak centred on ~ = 0 ~ even if such a 
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Figure 10 Theoretical changes in the etched shape of a "rough" surface profile and in the distribution of slopes with the duration of etching, t, 
for the case of a [001] trace made on a plane q%= 34 ~ (a, d)t = 0.5 arb. units; (b, e)t = 1 arb. units; (c, f)t = 3 arb. units. 

trace which presents sharp discontinuities at convex 
and concave intersections is, in theory, characterized 
by the absence of a central peak [8]. For these various 
reasons, care must be taken when tentative attempts 
are made to correlate experimental distributions of 
slopes with extrema in L. 

We now proceed to compare experimental and 
theoretical [00 1] traces. A fair agreement between 
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experimental and theoretical traces is revealed by 
examination of Tables V, VI and VII. Moreover, for 
q~o within the range [30 ~ 45~ the experimental angu- 
lar positions of the so-called secondary peaks (SP) 
coincide with those related to theoretical traces. As the 
angle ~0 increases from 10 ~ to 23 ~ we do not observe 
in experiments all the theoretical peaks mentioned in 
the third column of Table V, but only a central peak 
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Figure 11 Theoretical changes in the etched shape of a "rough" surface profile and in the distribution of slopes with the duration of etching, t, 
for the case of a x' 1 trace made on a plane q)o = 34~ (a, d)t = 1 arb. units; (b, e)t = 3 arb. units; (c, f)t = 5 arb. units. 

(CP at ~ = 0~ However ,  there  is no con t rad ic t ion  
between theory  and  exper iment  because the experi-  
menta l  d i s t r ibu t ion  covers a range ( -  10 ~ + 10~ 
Because the number  of  e lements  with slope in the 
vicinity of - 9 ~ or  9 ~ is very l imited,  it is not  surpris-  
ing that  one canno t  d is t inguish secondary  peaks  asso- 
c ia ted with ex t rema  in L close to _+ 9 ~ M o r e o v e r  for 
q)o = 18~ the exper imenta l  d i s t r ibu t ion  appea r s  rela- 
tively flat and  broad .  This  is p r o b a b l y  due to weak 

var ia t ions  in L with a for q~o in the vicinity of 23 ~ in 
accord  with the theoret ica l  L versus ~ p lo t  d i sp layed  
in Fig. 6d. 

Let  us now c ompa re  in Tables  IV, VI and  VII  
results re la ted to x '  1 traces. Here,  again,  we observe a 
good  agreement  between theoret ica l  and  exper imenta l  
shapes. The connec t ion  between exper imenta l  and  
theoret ica l  d is t r ibut ions  of slopes seems more  difficult 
to establ ish (Tables IV and VII). Effectively, there is 
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Figure 12 Theoretical changes in the etched shape of a "rough" surface profile and in the distribution of slopes with the duration of etching, t, 
for the case of a xl trace made on a plane q)o = 0~ (a,d) t = 1 arb. units; (b,e)t = 3 arb. units; (c,f) t = 5 arb. units. 

sometimes a weak difference between heights of the 
two peaks (denoted P1, P2) which occur in the dis- 
tr ibution of  slopes related to experimental or theoret- 
ical traces with alternate shape [8]. 

Therefore, the distinction between secondary peak 
(SP) and principal peak (PP) which can appear  as 
tendentious, is not  used in Table IV. In addition, in 
some theoretical traces, only the angular position of 
one of the two peaks can be determined with a suffic- 
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ient accuracy. However,  despite these difficulties, Tab-  
les IV and VII  show that, in most  cases, angular 
positions of peaks P1 or  P2 (Table IV) deviate from 
those of peaks called "SP" and " P P "  (Table VII) by 
less than 3 ~ Only  the cut s o = 34 ~ does not  follow this 
description but, in this case, a flat and broad  peak is 
observed in the theoretical distribution. 

A careful examinat ion of  Tables I V - V I I  reveals a 
close agreement between theory and experiments. We 



can thus infer that the theoretical shape for the dis- 
solution slowness surface, proposed in Part I is not far 
from the true shape, even if the true amplitude of 
extrema in L cannot be easily estimated from the 
present comparison. In particular it is clear that the 
slowness surface presents minima minimora for ori- 
entations (q% = 45 ~ 0 ~ _ 9 ~ and related orienta- 
tions. The development of a [001] surface profile 

characterized by constant slopes (= _+ 9 ~ is undoubt- 
edly due to these minima. The maximum in L located 
at (q~o = 45~ O = 0 ~ must, in addition, cause the 
formation of rounded concave intersections which in 
[001] experimental profilometry traces are masked 
by the so-called "mechanical filtering". Turning to 
Fig. 15, which shows the corresponding [001] surface 
profile restored by picture processing of an atomic 
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T A B L E  IV Characteristic features of theoretical x' traces as viewed in Fig. 13. The etching time t = 3 arb. units (moderately etched 
surfaces). A and S indicate "asymmetrical" and "symmetrical", respectively. P1, P2, .. .  correspond to peaks whose angular  positions can be 
easily estimated from distributions of slopes 

q~o (deg) Geometrical aspect 

Reg ions  with larger slopes .Regions with smaller slopes 

Distribution of slopes 

0 Concave (S) Concave (S) Ea 
5 Rather concave Rather concave C a m  

10 Convex-concave Rather concave E~ 
14 Convex-concave Convex-concave E= 
18 Convex-concave Convex-concave E= 
23 Convex with some truncations Convex E = ~  
26 Convex Convex E~ 
30 Concave-convex ~ Concave-convex Ea 
34 Concave-convex Concave-convex E~ 
37 Concave-convex Concave-convex E= 
42 Concave-convex Concave-convex E ~  
45 Concave (S) Concave (S) E~ 

- 10~ + 10~ P1 "~ 0~ S 
- 12~ + 8~ P I  ~ 3~ A 

- 12 ~ 11~ broad peak P1 ~ - 2~ A 
- 1 2 ~ 1 7 6  ~ - 5 ~  ~ + 5 ~  
- 13~ + 8~  ~ - 8~ P2 ~ 4 ~  

- -  16 ~ 16~ P1 ~ - 0~ S 

- 12~ 15~ P1 ~ - 2~ S 
- 24~ 21~ P1 ~ - &; A 
- 10 ~ 14~ broad peak P1 ~ - 5~ A 
- 12 ~ 14~ broad peak; A 
- 20 ~ 22~ broad peak P1 ~ - 5~ A 
- 17 ~ 17~ P1 ~ 0~ S 
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force microscope image, it appears that etching causes 
effectively thr formation of curved concave intersec- 
tions connected with the maximum in L. Thus for 
{1 1 0} plane, all the features predicted by theory are 
verified in experiments. Moreover, the influence of the 
minima minimora (% = 45 ~ 0 ~ + 9 ~ can be seen 
experimentally for cuts q)o in the range (30 ~ 45 ~ in 
accord with theory. 

In conclusion, the systematic comparison of experi- 
mental changes in two-dimensional dissolution shapes 

on orientation with the theoretical changes cannot 
allow us to establish any serious disagreement be- 
tween theory and experiments. Thus, in fact, the shape 
of the proposed dissolution slowness surface seems 
rather adequate. A further adjustment of this shape, if 
necessary, passes through complementary experi- 
ments involving three-dimensional shapes, such as 
those encountered in localized etching at an inert 
mask. To discuss the adequation of the dissolution 
surface in terms of experimental shapes related to 
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T A B  L E V Characterist ic features of theoretical [001]  traces as viewed in Fig. 14. The etching time t = 3 arb. units. * Regions with constant  
slopes. We have indicated in parentheses the angular  posit ions (am for a minimum, ~z M for a maximum) of extrema in L which generate the 
geometrical features of etched regions 

% (deg) Geometr ical  aspect 

Regions with larger slopes Regions with smaller slopes 

Distr ibut ion of slopes 

0 Concave (a M = 0 ~ Concave (a M = 0 ~ 
5 Concave (at M = 0 ~ Concave (cz M = 0 ~ 

10 Concave (:~M ~ + 6) Convex (am = 0 ~ 
14 Concave* (a M ~ 4- 10 ~ Convex (c~ m = 0 ~ 
18 Concave* (a M ~ + 10 ~ Convex (~m = 0~ 
23 Concave* OtM ~ 4- 8~ Convex (am = 0 ~ 

convex (a m ~ 4- 16 ~ 
26 Convex* (am ~ 4- 12 ~ Concave ( ~  ~ + 4~ 

convex (at m = 0 ~ 
30 Convex* (am ~ 4- 11~ Concave (a M = 0 ~ 
34 Convex* (am ~ _ 9 ~ Concave (a M = 0 ~ 
37 Convex* (am ~ 4- 9 ~ Concave (a M = 0 ~ 
42 Convex* (am ~ __+ 8 ~ Concave (~M = 0~ 
45 Convex* (~m ~ 4- 8 ~ Concave (~M = 0 ~ 

E=: ( - 12 ~ 12 ~ 
E~: ( - 12 ~ 12~ S 
E~: ( - 15 ~ 13~ broad  distribution; S 
E ~ : ( -  14 ~176  ~ - 9  ~ ~ , ~ 9 ~  
E ~ : ( -  13 ~ , 11~ g - 1 0 ~  ~ ~ 1 0 ~  
E~: ( - 31 ~ 15~ 
5peaks:  ~ - 1 5  ~ ,8  ~ ~ ~ 176  
E~: ( - 13 ~ 14~ 3 peaks: - 11 ~ 0 ~ 11~ S 

E~: ( - 11 ~ 9~ 3 peaks: = 10 ~ 0 ~ 9~ S 
Ed  ( - 10 ~ 13~ 3 peaks: - 10 ~ 0 ~ 9~ S 
E~: ( - 10 ~ 8~ 3 peaks: - 9 ~ 0 ~ 8~ S 
E~: ( -- 10 ~ 8~ 3 peaks: - 9 ~ 0 ~ 8~ S 
Ed  ( - 8 ~ 9~ 3 peaks: - 8 ~ 0 ~ 9~ S 
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T A B L E  VI Geometrical features of experimental x' and [00 1] 
profilometry traces 

~P0(deg) Rotated axis x' [001]  axis 

0 Concave and symmetrical Concave and symmetrical 
5 Alternate convex-concave Concave 

shape (concave regions are 
more extended) 

10 Alternate convex concave Convex and symmetrical 
shape 

14 Alternate convex-concave Convex and symmetrical 
shape with stable slopes 

18 Alternate convex concave Convex and symmetrical, 
shape stable constant slopes 

23 Convex-concave? Convex and symmetrical 
(rather convex than 
concave) 

26 Convex Convex and symmetrical 
30 Nearly convex with some Convex and symmetrical, 

concavity for slope > 10 ~ stable constant slopes 
34 Alternate concave convex Convex and symmetrical 

shape 
37 Alternate concave-convex Convex and symmetrical, 

shape (convex regions stable constant slopes 
seem more extended) 

42 Alternate concave convex Convex and symmetrical, 
shape stable constant slopes 

45 Concave and symmetrical Convex and symmetrical, 
stable constant slopes 

m i c r o - m a c h i n e d  s t r u c t u r e s  i t  b e c o m e s  n e c e s s a r y  t o  

d e v e l o p  a s i m u l a t i o n  p r o g r a m  w h i c h  a l l o w s  u s  t o  

p r e d i c t  s h a p e s  fo r  m e s a  a n d  d i a p h r a g m s  e t c h e d  i n t o  

v a r i o u s  (h k 0) s i l i c o n  p l a t e s .  

W e  wi l l  r e p o r t  e x p e r i m e n t s  o n  m a s k e d  (h k 0) p l a t e s  

a n d  t e n t a t i v e  a t t e m p t s  t o  d e r i v e  t h e o r e t i c a l  t h r e e -  

d i m e n s i o n a l  s h a p e s  i n  P a r t  I I I  o f  t h i s  w o r k .  W e  

r e a s o n a b l y  e x p e c t  t h a t  t h i s  f u t u r e  s t u d y  wi l l  c o n t a i n  

s u f f i c i e n t  i n f o r m a t i o n  t o  p e r m i t  a c o m p l e t e  i d e n t i f i c a -  

t i o n  o f  t h e  t r u e  s h a p e  fo r  t h e  d i s s o l u t i o n  s l o w n e s s  

su r f ace .  
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